• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Improved Dilated Convolutional Network for Herd Counting in Crowded Scenes

    View/Open
    An_Improved_Dilated_Convolutional_Network_for_Herd_Counting_in_Crowded_Scenes.pdf (2.402Mb)
    Date
    2020
    Author
    Hamrouni, Soufien
    Ghazzai, Hakim
    Menouar, Hamid
    Massoud, Yehia
    Metadata
    Show full item record
    Abstract
    Crowd management technologies that leverage computer vision are widespread in contemporary times. There exists many security-related applications of these methods, including, but not limited to: following the flow of an array of people and monitoring large gatherings. In this paper, we propose an accurate monitoring system composed of two concatenated convolutional deep learning architectures. The first part called Front-end, is responsible for converting bi-dimensional signals and delivering high-level features. The second part, called the Back-end, is a dilated Convolutional Neural Network (CNN) used to replace pooling layers. It is responsible for enlarging the receptive field of the whole network and converting the descriptors provided by the first network to a saliency map that will be utilized to estimate the number of people in highly congested images. We also propose to utilize a genetic algorithm in order to find an optimized dilation rate configuration in the back-end. The proposed model is shown to converge 30% faster than state-of-the-art approaches. It is also shown that it achieves 20% lower Mean Absolute Error (MAE) when applied to the Shanghai data set.
    DOI/handle
    http://dx.doi.org/10.1109/MWSCAS48704.2020.9184558
    http://hdl.handle.net/10576/60232
    Collections
    • QMIC Research [‎278‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video