• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Intelligent Two-Stage Energy Dispatch Management System for Hybrid Power Plants: Impact of Machine Learning Deployment

    Thumbnail
    View/Open
    An_Intelligent_Two-Stage_Energy_Dispatch_Management_System_for_Hybrid_Power_Plants_Impact_of_Machine_Learning_Deployment.pdf (2.603Mb)
    Date
    2023-01-01
    Author
    Shibl, Mostafa M.
    Ismail, Loay S.
    Massoud, Ahmed M.
    Metadata
    Show full item record
    Abstract
    The utilization of renewable energy sources such as PV and wind power has become imperative due to the increase of carbon dioxide emissions, which leads to the increase in global temperature and the negative consequences of climate change. As a result, renewable energy sources are constantly gaining popularity to be integrated in power systems to create hybrid power plants (HPPs). However, HPPs come with great complications due to the uncertainty in renewable energy output, which has given rise to the need for a reliable and effective energy dispatch management system for HPPs. In this paper, a two-stage machine learning (ML) based energy dispatch management system for HPPs is designed to control renewable energy sources (PV and wind power), reserve energy sources (energy storage systems) and backup energy sources (diesel, fuel cells, auxiliary loads, etc.). The system aims to minimize the power variance in the HPPs to achieve peak shaving and valley filling. The first stage aims to forecast the power output of renewable energy sources, as well as the load demand. The second stage aims to coordinate the energy output of the reserve and backup sources to achieve the required objective. Different ML techniques were compared to find the highest performing ML algorithm to achieve the required objective of the system, where long short-term memory (LSTM) provided the highest results with an average mean squared error of 0.005 and an average explained variance score of 0.9. The results of the management system verify the effectiveness of the system for the management of the energy dispatch in HPPs, through the successful flattening of the load curve of the HPP, which increases the reliability of the power system with the integration of renewable energy sources. Also, the system was shown to be robust against the uncertainty of the PV and wind power output, and the load demand.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85148433459&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2023.3243097
    http://hdl.handle.net/10576/60255
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video