• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SRM power density improvement utilising rotor conducting screens and DC-link voltage boosting for EV applications

    Thumbnail
    Date
    2021-06-01
    Author
    Abdel-Aziz, Aly A.
    Ahmed, Khaled H.
    Massoud, Ahmed M.
    Williams, Barry W.
    Metadata
    Show full item record
    Abstract
    The power density enhancement of a four-phase switched reluctance motor using rotor conducting screens and DC-link voltage boosting for electric vehicle applications is studied. The effect of conducting screen thickness and material electrical conductivity on current rise time, developed torque, and output power is studied. Different screen shapes are compared that elicit the optimum screen design by formulating a multi-objective optimisation problem based on maximising the developed torque and efficiency and minimising added material weight. A double arm common switch converter with a DC-link voltage-boosting capacitors is deployed. The boosted voltage provided by the capacitors aids the winding current to rapidly build-up; thus, increasing the motor base speed, whence power rating. Finite element analysis results confirm the SRM drive's effectiveness in increasing the motor base speed and improving the torque range; hence make the power capability of SRMs to be competitive with an equivalent volume permanent magnet synchronous motor.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85142606424&origin=inward
    DOI/handle
    http://dx.doi.org/10.1049/els2.12012
    http://hdl.handle.net/10576/60258
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video