• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Qatar Mobility Innovations Center
  • QMIC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effective Urban Structure Inference from Traffic Flow Dynamics

    View/Open
    Effective_Urban_Structure_Inference_from_Traffic_Flow_Dynamics.pdf (1.434Mb)
    Date
    2017
    Author
    Sarkar, Somwrita
    Chawla, Sanjay
    Ahmad, Shameem
    Srivastava, Jaideep
    Hammady, Hosam
    Filali, Fethi
    Znaidi, Wasim
    Borge-Holthoefer, Javier
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Mobility in a city is represented as traffic flows in and out of defined urban travel or administrative zones. While the zones and the road networks connecting them are fixed in space, traffic flows between pairs of zones are dynamic through the day. Understanding these dynamics in real time is crucial for real time traffic planning in the city. In this paper, we use real time traffic flow data to generate dense functional correlation matrices between zones during different times of the day. Then, we derive optimal sparse representations of these dense functional matrices, that accurately recover not only the existing road network connectivity between zones, but also reveal new latent links between zones that do not yet exist but are suggested by traffic flow dynamics. We call this sparse representation the time-varying effective traffic connectivity of the city. A convex optimization problem is formulated and used to infer the sparse effective traffic network from time series data of traffic flow for arbitrary levels of temporal granularity. We demonstrate the results for the city of Doha, Qatar on data collected from several hundred bluetooth sensors deployed across the city to record vehicular activity through the city's traffic zones. While the static road network connectivity between zones is accurately inferred, other long range connections are also predicted that could be useful in planning future road linkages in the city. Further, the proposed model can be applied to socio-economic activity other than traffic, such as new housing, construction, or economic activity captured as functional correlations between zones, and can also be similarly used to predict new traffic linkages that are latently needed but as yet do not exist. Preliminary experiments suggest that our framework can be used by urban transportation experts and policy specialists to take a real time data-driven approach towards urban planning and real time traffic planning in the city, especially at the level of administrative zones of a city.
    DOI/handle
    http://dx.doi.org/10.1109/TBDATA.2016.2641003
    http://hdl.handle.net/10576/60455
    Collections
    • QMIC Research [‎278‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video