• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    HBKU at TREC 2020: Conversational Multi-Stage Retrieval with Pseudo-Relevance Feedback

    Thumbnail
    View/Open
    HBKU.C.pdf (491.6Kb)
    Date
    2020
    Author
    Al-Thani, Haya
    Jansen, Bernard J.
    Elsayed, Tamer
    Metadata
    Show full item record
    Abstract
    Passage retrieval in a conversational context is extremely challenging due to limited data resources. Information seeking in a conversational setting may contain omissions, implied context, and topic shifts. TREC CAsT promotes research in this field by aiming to create a reusable dataset for open-domain conversational information seeking (CIS). The track achieves this goal by defining a passage retrieval task in a multi-turn conversation setting. Understanding conversation context and history is a key factor in this challenge. This solution addresses this challenge by implementing a multi-stage retrieval pipeline inspired by last year's winning algorithm. The first stage in this retrieval process is a historical query expansion step from last year's winning algorithm where context is extracted from historical queries in the conversation. The second stage is the addition of a pseudo-relevance feedback step where the query is expanded using top-k retrieved passages. Finally, a pre-trained BERT passage re-ranker is used. The solution performed better than the median results of other submitted runs with an NDCG@3 of 0.3127 for the best performing run.
    DOI/handle
    http://hdl.handle.net/10576/60890
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video