• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Computational study on organochlorine insecticides extraction using ionic liquids

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2405844024019625-main.pdf (9.852Mb)
    Date
    2024
    Author
    Mohammad K., Al Hassan
    Nasser, Mustafa S.
    Hussein, Ibnelwaleed A.
    Ba-Abbad, Muneer
    Khan, Imran
    Metadata
    Show full item record
    Abstract
    Insecticides pose hazardous environmental effects and can enter the food chain and contaminate water resources. Ionic liquids (ILs) have recently drawn much interest as environmentally friendly solvents and have been an efficient choice for extracting pesticides because of their outstanding thermophysical characteristics and tunable nature. In this study, ILs were screened using COSMO-RS (Conductor-like Screening Model for Real Solvents) to extract organochlorine insecticides from water at 289 K. A total of 165 ILs, a combination of 33 cations with five anions, were screened by COSMO-RS to predict the selectivity and capacity of the organochlorine insecticides at infinite dilution. The Organochlorine insecticide compounds, such as benzene hexachloride (BHC), Heptachlor, Aldrin, Gamma-Chlordane (γ-Chlordane), Endrin, and Methoxychlor are selected for this study. Charge density profiles show that Endrin and Methoxychlor compounds are strong H-bond acceptors and weak H-bond donors, while the rest of the compounds are H-bond donors with no H-bond acceptor potential. Moreover, it has been shown that ILs composed of halides and heteroatomic anions in conjunction with cations have enhanced selectivity and capacity for insecticides. Moreover, the hydrophobic phosphonium-based ILs have enhanced selectivity and capacity for insecticides. In BHC extraction, the selectivity of 1,3-dimethyl-imidazolium chloride was found to be the highest at 1074.06, whereas 2-hydroxyethyl trimethyl ammonium chloride exhibited the highest capacity being 84.0.1,3-dimethyl-imidazolium chloride exhibits the highest performance index, which is 57064.77. In addition, the ILs that have been chosen are well-recognized as environmentally friendly and very effective solvents to extract insecticides from water. As a result, this study evaluated that ILs could be promising solvents that may be further developed for the extraction of insecticides from contaminated water.
    DOI/handle
    http://dx.doi.org/10.1016/j.heliyon.2024.e25931
    http://hdl.handle.net/10576/61049
    Collections
    • Chemical Engineering [‎1195‎ items ]
    • GPC Research [‎502‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video