Thermoelectric behavior of Bi2Te2.55Se0.45 with a tunable seebeck coefficient: A comparison between coarse needle-like structure and bulk nanostructured alloys
View/ Open
Publisher version (Check access options)
Check access options
Date
2023Metadata
Show full item recordAbstract
In this study, we compare the thermoelectric properties of coarse-grained n-type Bi2Te2.55Se0.45 alloy prepared by induction melting with the bulk-nanostructured prepared by ball milling and hot-pressing techniques. The corresponding thermoelectric properties showed different behavior for each material processed using different routes. The most striking result of the study is observing a p-type behavior and charge carrier transition from p-to n-type for the coarse-grained alloy. These observed phenomena are related mainly to the unique needle-like microstructure accompanied by high lattice strain. Lastly, the obtained figure-of-merit values for the coarse needle-like structure and bulk nanostructured Bi2Te2.55Se0.45 alloys are 0.20 and 0.80 at their optimum temperatures of 60 and 120 °C, respectively.
Collections
- Center for Advanced Materials Research [1378 items ]
- Materials Science & Technology [310 items ]
- Mechanical & Industrial Engineering [1396 items ]