• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Day-Ahead electricity price forecasting using a CNN-BiLSTM model in conjunction with autoregressive modeling and hyperparameter optimization

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2024-10-01
    Author
    Mubarak, Hamza
    Abdellatif, Abdallah
    Ahmad, Shameem
    Zohurul Islam, Mohammad
    Muyeen, S. M.
    Abdul Mannan, Mohammad
    Kamwa, Innocent
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The inherent volatility in electricity prices exerts a significant impact on the dynamic nature of the electricity market, shaping the decision-making processes of its stakeholders. Precise Electricity Price Forecasting (EPF) plays a pivotal role in enabling energy suppliers to optimize their bidding strategies, mitigate transactional risks, and capitalize on market opportunities, thereby ensuring alignment with the true economic value of energy transactions. Hence, this study proposes an advanced deep learning model for forecasting electricity prices one day in ahead. The model leverages the synergistic capabilities of Convolutional Neural Networks (CNN) and bidirectional Long Short-Term Memory networks (BiLSTM), operating concurrently with an autoregressive (AR) component, denoted as CNN-BiLSTM-AR. The integration of the AR model alongside CNN-BiLSTM enhances overall performance by exploiting AR's proficiency in capturing transient linear dependencies. Simultaneously, CNN-BiLSTM excels in assimilating spatial and protracted temporal features. Moreover, the research delves into the implications of incorporating hyperparameter optimization (HPO) techniques, such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Random Search (RS). The effectiveness of the model is evaluated using two distinct European datasets sourced from the UK and German electricity markets. Performance metrics, including Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), serve as benchmarks for assessment. Finally, the findings underscore the notable performance enhancement achieved through the implementation of HPO methods in conjunction with the proposed model. Especially, the PSO-CNN-BiLSTM-AR model demonstrates substantial reductions in RMSE and MAE, amounting to 16.7% and 23.46%, respectively, for the German electricity market.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85202859414&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.ijepes.2024.110206
    http://hdl.handle.net/10576/61946
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video