• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Operational assessment of solar-wind-biomass-hydro-electrolyser hybrid microgrid for load variations using model predictive deterministic algorithm and droop controllers

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2024-09-01
    Author
    Ishraque, Md Fatin
    Shezan, Sk  A
    Shafiullah, G. M.
    Muyeen, S. M.
    Alharbi, Talal
    Alenezi, Ali H.
    Hossen, Md Delwar
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This study presents the operation and assessment of a solar-wind-biomass-hydro-electrolyser hybrid microgrid for different types of load variations by using a proprietary derivative-free algorithm (Model Predictive Deterministic Algorithm) and voltage IQ droop controller. The proposed hybrid microgrid integrates various renewable energy sources and an electrolyser to generate hydrogen and produce electricity. The objective is to optimize the microgrid's performance and provide reliable power supply to meet varying load demands. The proprietary derivative-free algorithm is used to determine the optimal dispatch of power from each energy source to meet the load demand while minimizing the overall cost of energy. Additionally, a voltage IQ droop and voltage Q droop controller are employed to regulate the voltage, frequency and active power of the microgrid and maintain its stability during load variations. The proposed hybrid microgrid is assessed under different load scenarios for both grid tied and isolated modes. The results demonstrate that the proposed hybrid microgrid with the derivative-free algorithm and voltage droop controllers can effectively operate and provide reliable power supply under different load variations while maintaining the power system stability of the microgrid. Further, the mutual performances of the controller are compared to find the best controller for the specific microgrid. The findings of this study can contribute to the development of efficient and reliable hybrid microgrid systems for sustainable energy production and distribution.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85202959620&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.prime.2024.100745
    http://hdl.handle.net/10576/61948
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video