• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy market trading in green microgrids under information vulnerability of renewable energies: A data-driven approach

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2024-06-01
    Author
    Sabzevari, Kiomars
    Habib, Salman
    Tabar, Vahid Sohrabi
    Shaillan, Haider Muaelou
    Hassan, Qusay
    Muyeen, S. M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The uncertainties of energy networks have increased in recent years due to the fast and widespread penetration of renewable resources. In this paper, the energy market trading of green microgrids composed of wind and solar units is taken into consideration under the information vulnerability of renewable energies. Since wind speed and solar radiation data are the most critical parameters to calculate the output power of wind turbines and photovoltaics, it is assumed that non-legitimate agents attempt to alter them and inject false data toward increasing operational costs. In order to mitigate the influence of this problem, a data-driven framework consisting of evaluation, purification and prediction parts is designed in which the k-nearest neighbour algorithm is utilized for anomaly detection and various methods including artificial neural network, deep learning, Gaussian process, linear regression and support vector machine are implemented and compared to specify the best operation for prediction unit. It should be noted that a stochastic approach is also used to model probable malicious attacks and avoid any biased behavior. The results validate that the proposed framework supports the operator to make better decisions for participating in day-ahead and real-time energy markets in the presence of renewable resources vulnerability.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85190819661&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2024.03.059
    http://hdl.handle.net/10576/62008
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video