• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cooperative operational planning of multi-microgrid distribution systems with a case study

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352484724000714-main.pdf (5.178Mb)
    Date
    2024-06-01
    Author
    Azizivahed, Ali
    Gholami, Khalil
    Rupf, Gloria V.
    Arefi, Ali
    Lund, Christopher
    Walia, Jagpreet
    Rahman, Md Moktadir
    Islam, Md Rabiul
    Muyeen, SM M.
    Kamwa, Innocent
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Clustering historical electricity consumption data is very important for creating representative demand profiles for the planning and operation of the power grids. This paper investigates a multi-dimensional framework for data clustering, which takes scattering and separation metrics, as well as the number of clusters into account. A combination of wavelet mutation with the Invasive Weed Optimization (IWO) method for clustering features is proposed. One notable advantage of the IWO method over other metaheuristic optimization algorithms is its ability to dynamically adapt the number of weed colonies during the search process, resulting in improved exploration and exploitation of the search space. The proposed strategy is applied to cluster the electricity consumption data from a large municipal government center in Perth, Western Australia. The suggested method is then evaluated by comparing it with the well-known method in the literature, namely, the k-means technique. After the data clustering, the obtained results are implemented in the design of a multi-microgrid system under two different scenarios of cooperative and noncooperative modes. To evaluate the performance of the proposed method, the proposed method is implemented on the operational planning of a real multi-microgrid distribution system in Western Australia using linear programming to take the advantage of the mathematical-based solvers. After performing some investigations, the cooperative mechanism, where the microgrids have participated in supplying the demand of microgrids was found to yield to greater operational and investment cost minimimzation. In terms of numerical comparison, the total cost in the cooperative model is 6.5% lower than that in a non-cooperative situation.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85185164362&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2024.01.071
    http://hdl.handle.net/10576/62011
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video