• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adaptive Laplacian Continuous Mixed-Norm Control Approach for Dynamic Performance Improvement of Wind Energy Systems

    Thumbnail
    View/Open
    Adaptive_Laplacian_Continuous_Mixed-Norm_Control_Approach_for_Dynamic_Performance_Improvement_of_Wind_Energy_Systems.pdf (3.189Mb)
    Date
    2024-01-01
    Author
    Alqahtani, Ayedh H.
    Hasanien, Hany M.
    Alharbi, Mohammed
    Chuanyu, Sun
    Muyeen, S. M.
    Metadata
    Show full item record
    Abstract
    This paper introduces an adaptive filtering algorithm based on the Laplacian continuous mixed-norm (LCMN) as a control methodology to improve both transient and dynamic wind energy systems (WESs) performances. The foundation of this wind system is a variable-speed wind turbine that powers a permanent magnet synchronous generator. The proposed LCMN algorithm automatically updates all interface circuits' proportional-integral (PI) controllers gains. It has several advantages compared with other algorithms such as higher algorithm stability, lower fluctuations and steady-state errors. The efficacy of the LCMN-based PI control approach is validated by a fair comparison with other control methods such as the least mean square, robust mixed norm and continuous mixed p-norm when the WES is subjected to severe symmetrical and various unbalanced conditions. Furthermore, the applicability of the suggested technique is examined in typical operational circumstances utilizing actual wind speed measurements obtained from Hokkaido Island. The results indicate preferable performance of dynamic analyses even though the wind speed profile is intermittent.. The dynamic responses exhibit an actuating error of less than 2% across numerous profiles. Therefore, the LCMN-based PI control methodology is considered as an effective solution for online adjustment of controller gains in the course of system nonlinearities and uncertainties. A key advantage of this method is its independence from constructing system transfer functions and the avoidance of optimization methods. This can save substantial time and effort typically required for optimization processes.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85199175194&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2024.3426941
    http://hdl.handle.net/10576/62040
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video