• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Adaptive controlled superconducting magnetic energy storage devices for performance enhancement of wind energy systems

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2090447923002320-main.pdf (2.326Mb)
    Date
    2023-06-24
    Author
    Rania A., Turky
    Abdelsalam, Tarek S.
    Hasanien, Hany M.
    Alharbi, Mohammed
    Ullah, Zia
    Muyeen, S.M.
    Abdeen, Amr M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This research paper introduces the Generalized Continuous Mixed P-Norm Sub-Band Adaptive Filtering (GCMPNSAF) algorithm, designed for efficient online control of Superconducting Magnetic Energy Storage Devices (SMESDs) in Wind Energy Systems (WESs). The primary objective of this algorithm is for minimizing power ripples in WESs. The Wind Energy System (WES) under consideration is tied to the IEEE 39 bus system, with the Superconducting Magnetic Energy Storage Device (SMESD) integrated at the point of common coupling. The GCMPNSAF algorithm is applied to update or adapt proportional-integral (PI) controller gains of SMESD interface circuits. The proposed algorithm is an enhanced version of the CMPN by adding the sub-band filtering algorithm effect. It depends mainly on the actuating error signal, and it has a variable step size of the CMPN. The detailed modeling of the whole system is presented, including measured wind speed data, detailed switching techniques, a drive train model of the turbine, and real SMESD. The efficacy of the proposed SMESD has been validated through a comparative analysis with the Least Mean Square-SMESD approach, under conditions of varying and unpredictable wind speeds. The simulation results produced by the PSCAD software are used to evaluate the study's validity. The utilization of controlled SMESDs has the potential to significantly enhance the power quality of WESs.
    URI
    https://www.sciencedirect.com/science/article/pii/S2090447923002320
    DOI/handle
    http://dx.doi.org/10.1016/j.asej.2023.102343
    http://hdl.handle.net/10576/62108
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video