عرض بسيط للتسجيلة

المؤلفJena, Ramakanta
المؤلفDash, Ritesh
المؤلفReddy, Kalvakurthi Jyotheeswara
المؤلفParida, Prasanta Kumar
المؤلفDhanamjayulu, Chittathuru
المؤلفSwain, Sarat Chandra
المؤلفMuyeen, S. M.
تاريخ الإتاحة2025-01-12T08:39:12Z
تاريخ النشر2023-05-24
اسم المنشورSustainability (Switzerland)
المعرّفhttp://dx.doi.org/10.3390/su15118535
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85163113028&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62110
الملخصMaximum Power Point Tracking (MPPT) is a technique used in photovoltaic (PV) systems to maximize the power output from the solar panel by constantly tracking and adjusting the optimal operating point. To achieve this, various algorithms have been developed, with Particle Swarm Optimization (PSO) being a widely used method. By adjusting the control system’s parameters, PSO can determine the optimal operating point of the solar panel and improve its overall performance. PSO employs swarm intelligence by simulating the behavior of particles to find the best solution for a given problem. Long Short-Term Memory (LSTM) belongs to the family of Recurrent Neural Networks (RNN) in machine learning and is designed to address the limitations of traditional RNNs in capturing long-term dependencies that exist in sequential data. The combination of PSO and LSTM techniques can result in an efficient MPPT algorithm that leverages the benefits of both. PSO is utilized to optimize the control parameters of the MPPT algorithm, while LSTM is used to predict the solar panel’s power output based on historical data. Consequently, this integration can lead to an accurate and efficient MPPT algorithm that can effectively track the solar panel’s maximum power point. In this research article, an effort has been made to control the duty cycle of the converter by suitably controlling the system gain. A Matlab-based Simulink model in conjunction with Python programming has been used to make the system more robust.
اللغةen
الناشرMultidisciplinary Digital Publishing Institute (MDPI)
الموضوعalgorithm
GA
PSO
PSO-LSTM
search space
العنوانEnhancing Efficiency of Grid-Connected Solar Photovoltaic System with Particle Swarm Optimization & Long Short-Term Memory Hybrid Technique
النوعArticle
رقم العدد11
رقم المجلد15
ESSN2071-1050
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة