عرض بسيط للتسجيلة

المؤلفMansura, Habiba
المؤلفIslam, Md. Rafiqul
المؤلفMuyeen, S.M.
المؤلفAli, A.B.M. Shawkat
تاريخ الإتاحة2025-01-12T10:10:22Z
تاريخ النشر2023-04-26
اسم المنشورComputers and Electrical Engineering
المعرّفhttp://dx.doi.org/10.1016/j.compeleceng.2023.108727
الاقتباسHabiba, M., Islam, M. R., Muyeen, S. M., & Ali, A. S. (2023). Edge intelligence for network intrusion prevention in IoT ecosystem. Computers and Electrical Engineering, 108, 108727.
الرقم المعياري الدولي للكتاب0045-7906
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S0045790623001519
معرّف المصادر الموحدhttp://hdl.handle.net/10576/62115
الملخصThe Internet of Things (IoT) platform allows physical devices to connect directly to the internet and upload data continuously. Insecure access makes IoT platforms vulnerable to different network intrusion attacks. As a result, the Intrusion Detection System (IDS) is a core component of a modern IoT platform. However, traditional IDS often follows rule-based detection where the rules can be changed and exposed to the attacker and becomes weak over time. An efficient IDS also needs to be dynamic and effective in real time. This paper proposes a deep learning-based algorithm to protect the network against Distributed Denial-of-Service (DDoS) attacks, insecure data flow, and similar network intrusions. A system architecture is designed for a cloud-based IoT framework to implement the proposed algorithm efficiently. The performance evaluation using standard datasets demonstrates that the proposed model provides an accuracy of up to 99.99%.
راعي المشروعOpen access funding provided by the Qatar National Library.
اللغةen
الناشرElsevier
الموضوعInternet of things (IoT)
IoT applications
Security
Attacks
Privacy
Machine learning
Deep learning
العنوانEdge intelligence for network intrusion prevention in IoT ecosystem
النوعArticle
رقم المجلد108
Open Access user License http://creativecommons.org/licenses/by/4.0/
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة