• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal scheduling algorithm for residential building distributed energy source systems using Levy flight and chaos-assisted artificial rabbits optimizer

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352484723007461-main.pdf (5.689Mb)
    Date
    2023-05-16
    Author
    D., Sathish Kumar
    Premkumar, M.
    Kumar, C.
    Muyeen, S.M.
    Metadata
    Show full item record
    Abstract
    The increase in demand for MicroGrids (MGs) is a significant factor in the provision of electricity in the future, mainly due to the use of renewable energy sources, which reduces the release of hazardous gases. The grid-connected MG operation is the most cost-effective and reliable because it actively involves the grid buying and selling power, lowering the electricity cost of the MG. This study describes a residential thermal/electrical home energy system comprising a battery energy storage system and a combined heat and power fuel cell. The optimal planning of various energy resources is scheduled by a new optimization algorithm called Levy Flight and Chaos-assisted Artificial Rabbits Optimization (LFCARO), resulting in the lowest operational cost of this combined power system. The operating cost of a residential building is reduced by using a day-ahead scheduling process for controlling multiple energy sources to create a reliable look-up table that estimates the best schedule for the distributed energy sources at each time frame. The impact of various electricity prices for obtaining energy from the primary grid on the system’s operating costs is examined. The efficiency of LFCARO is compared with other algorithms, and the results show that LFCARO performs better than other algorithms. The execution time of the proposed LFCARO is less than 1 sec. for 10 numerical problems and less than 1.5 sec. for the resource scheduling of residential distribution systems. Based on the average Friedman’s ranking test values, the proposed algorithm stands first with 1.82 for numerical and real-world scheduling problems.
    URI
    https://www.sciencedirect.com/science/article/pii/S2352484723007461
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2023.05.004
    http://hdl.handle.net/10576/62133
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video