• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parametric analysis and prediction of energy consumption of electric vehicles using machine learning

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352152X23016237-main.pdf (7.702Mb)
    Date
    2023-07-17
    Author
    Md. Nurun, Nabi
    Ray, Biplob
    Rashid, Fazlur
    Al Hussam, Wisam
    Muyeen, S.M.
    Metadata
    Show full item record
    Abstract
    Emission regulations for all automobiles have been introduced to reduce global warming caused by vehicles. Hybrid electric vehicles (HEVs) are being developed to address consumer demand for environmentally friendly automobiles with more power and better fuel efficiency. HEVs are propelled by a combination of an internal combustion engine (ICE) and one or more electric motors that draw power from a secondary battery, which is commonly a lithium-based battery. The fuel economy of such a hybrid drivetrain system can be enhanced above that of traditional ICE automobiles. Although the global world is now focussing on electric vehicles (EVs) over HEVs due to environmental pollution. In this study, a 1-dimensional model was developed for an electric vehicle (EV), and a parametric analysis was made for the eight different cycles using GT-Suite software. The parameters included motor power, state of charge of the battery, vehicle speed, distance travelled, and energy consumption. In light of the parametric analysis obtained using GT-Suite software, this paper also predicts the energy consumption of EV batteries using a neural network-based machine learning (ML) method. After selecting input parameters through a correlation coefficient index (CI) process, the proposed neural network-based prediction model has achieved 89% accuracy in predicting battery energy consumption which will help EV drivers to plan. It will also help automobile engineers to design more efficient and scalable EVs.
    URI
    https://www.sciencedirect.com/science/article/pii/S2352152X23016237
    DOI/handle
    http://dx.doi.org/10.1016/j.est.2023.108226
    http://hdl.handle.net/10576/62137
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video