• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dispatchable capacity optimization strategy for battery swapping and charging station aggregators to participate in grid operations

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2352484723011009-main.pdf (1.506Mb)
    Date
    2023-07-24
    Author
    Mingze, Zhang
    Yu, Samson S.
    Yu, Hanlin
    Li, Ping
    Li, Weidong
    Muyeen, S.M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Taking the aggregator as a unit, battery swapping and charging stations (BSCSs) for electric vehicles (EVs) can be aggregated and dispatched by grid operators, to realize the demand-side resource regulation. Considering the characteristics of an aggregator’s multilateral services, in this study, BSCSs need to ensure the quality of swapping service for EV users and participate in the demand-side regulation response. Firstly, we analyze the operation mechanism of a BSCS in the aggregation mode and propose a state transition model for EV batteries. On this basis, the EV demand uncertainty is incorporated by a distributed robust optimization (DRO) approach for multi-timescale inventories, and an optimization model to maximize the BSCSs’ income is established, which obtains the optimal load planning and dispatchable capacity scheduling for a BSCS aggregator. Extensive simulations and numerical results show that the BSCS aggregator with demand-side regulation capacity can increase its income by 59.05% and 36.78% on working and non-working days, respectively. Also, the aggregator does not worsen the original power load while meeting the EV swapping demand and can decrease the daily load fluctuations by 0.65% and 12.89%, reduce the peak–valley difference by 5.81% and 7.80%, and increase the load rate by 3.67% and 4.08% in working and non-working day situations through providing the dynamic dispatchable capacity for the grid.
    URI
    https://www.sciencedirect.com/science/article/pii/S2352484723011009
    DOI/handle
    http://dx.doi.org/10.1016/j.egyr.2023.07.022
    http://hdl.handle.net/10576/62152
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video