• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal sizing of battery energy storage systems and reliability analysis under diverse regulatory frameworks in microgrids

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2211467X23002055-main.pdf (4.202Mb)
    Date
    2024-01-01
    Author
    Gholami, Mohammadreza
    Muyeen, S. M.
    Abokhamis Mousavi, Soad
    Metadata
    Show full item record
    Abstract
    The integration of battery energy storage systems (BESS) with microgrids (MG) is crucial to improve the reliability and flexibility of renewable energy sources (RES) integration. However, the reliability and regulatory policies are critical factors that affect the optimal operation of MGs in the market. This study aims to enhance the reliability of MGs integrated with RES and BESS by evaluating their performance under different regulatory frameworks, namely feed-in tariff (FiT), net metering (NM), and energy storage incentive (ESI). Also, a dynamic FiT (D-FiT) framework is utilized to improve the reliability of the MG. An artificial bee colony optimization algorithm is utilized to optimize the size of BESS for each regulatory policy to minimize the total cost of the MG. Each policy is formulated based on its specific constraints in the problem. Subsequently, the reliability indices of Loss of Load Expectation (LOLE) and Expected Energy not Supplied (EENS) are calculated for each optimized solution. Moreover, we have integrated the dynamic thermal rating (DTR) system into our proposed model, focusing on the safe augmentation of system component ratings. The study finds that the D-FiT and standard FiT frameworks provide the best reliability level, whereas the reliability improvement under the ESI policy is not significant, as most of the MG's demand is supplied by the main grid. Furthermore, the study shows that the improvements in EENS are higher than LOLE, indicating that installing BESS reduces the loss of energy rather than the number of interruption hours. D-FiT framework has a significant positive impact on both reliability indices, unlike the other frameworks that have a greater effect on EENS. Furthermore, we have noticed a substantial improvement in reliability indices when the DTR system is taken into account, as compared to the static thermal rating (STR) system.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85178371671&origin=inward
    DOI/handle
    http://dx.doi.org/10.1016/j.esr.2023.101255
    http://hdl.handle.net/10576/62159
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video