• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Network & Distributed Systems
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Generalized Model and Deep Reinforcement Learning-Based Evolutionary Method for Multitype Satellite Observation Scheduling

    View/Open
    Generalized_Model_and_Deep_Reinforcement_Learning-Based_Evolutionary_Method_for_Multitype_Satellite_Observation_Scheduling.pdf (1.941Mb)
    Date
    2024
    Author
    Song, Yanjie
    Ou, Junwei
    Pedrycz, Witold
    Suganthan, Ponnuthurai Nagaratnam
    Wang, Xinwei
    Xing, Lining
    Zhang, Yue
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Multitype satellite observation, including optical observation satellites, synthetic aperture radar (SAR) satellites, and electromagnetic satellites, has become an important direction in integrated satellite applications due to its ability to cope with various complex situations. In the multitype satellite observation scheduling problem (MTSOSP), the constraints involved in different types of satellites make the problem challenging. This article proposes a mixed-integer programming model and a generalized profit representation method in the model to effectively cope with the situation of multiple types of satellite observations. To obtain a suitable observation plan, a deep reinforcement learning-based genetic algorithm (DRL-GA) is proposed by combining the learning method and genetic algorithm. The DRL-GA adopts a solution generation method to obtain the initial population and assist with local search. In this method, a set of statistical indicators that consider resource utilization and task arrangement performance are regarded as states. By using deep neural networks to estimate the Q value of each action, this method can determine the preferred order of task scheduling. An individual update strategy and an elite strategy are used to enhance the search performance of DRL-GA. Simulation results verify that DRL-GA can effectively solve the MTSOSP and outperforms the state-of-the-art algorithms in several aspects. This work reveals the advantages of the proposed generalized model and scheduling method, which exhibit good scalability for various types of observation satellite scheduling problems.
    DOI/handle
    http://dx.doi.org/10.1109/TSMC.2023.3345928
    http://hdl.handle.net/10576/62252
    Collections
    • Network & Distributed Systems [‎142‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video