• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Localized Constrained-Domination Principle for Constrained Multiobjective Optimization

    عرض / فتح
    Localized_Constrained-Domination_Principle_for_Constrained_Multiobjective_Optimization.pdf (985.4Kb)
    التاريخ
    2024
    المؤلف
    Zhou, Jinlong
    Zhang, Yinggui
    Wang, Juan
    Suganthan, Ponnuthurai Nagaratnam
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The constrained-domination principle (CDP) is one of the most popular constraint-handling techniques (CHTs), since it is simple, nonparametric, and easily embedded in unconstrained multiobjective evolutionary algorithms (MOEAs). However, the CDP overly emphasizes the importance of feasibility, which may lead to the search getting stuck in some locally feasible regions or locally optimal, especially when encountering problems with discontinuous and/or narrow feasible regions. This article seeks to capitalize on the strengths of the CDP while overcoming its weaknesses. Accordingly, we propose a novel constrained MOEA (called MOEA/D-LCDP), in which the CDP is applied in a local manner. Unlike most CHTs that emphasize feasibility, which use the feasibility rule in the whole search space, the proposed localized CDP only adopts the CDP within the niche. That is, to maintain the diversity of the population, only solutions within the niche are compared based on the localized CDP. The niche radius is determined a priori by the acute angle between the current subproblem and its nearest subproblem. Additionally, a population-based status detection strategy is developed to allocate computing resources more rationally, and a diversity-enhanced CDP is designed to enhance the exploitation of the search. Comprehensive experiments conducted on four benchmark test suites with a total of 34 problems and three real-world applications demonstrate that MOEA/D-LCDP is very competitive with representative algorithms.
    DOI/handle
    http://dx.doi.org/10.1109/TSMC.2023.3324797
    http://hdl.handle.net/10576/62254
    المجموعات
    • الشبكات وخدمات البنية التحتية للمعلومات والبيانات [‎142‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video