• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الشبكات وخدمات البنية التحتية للمعلومات والبيانات
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy-Efficient Satellite Range Scheduling Using a Reinforcement Learning-Based Memetic Algorithm

    عرض / فتح
    Energy-Efficient_Satellite_Range_Scheduling_Using_a_Reinforcement_Learning-Based_Memetic_Algorithm.pdf (3.085Mb)
    التاريخ
    2024
    المؤلف
    Song, Yanjie
    Suganthan, Ponnuthurai Nagaratnam
    Pedrycz, Witold
    Yan, Ran
    Fan, Dongming
    Zhang, Yue
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    The rapid expansion of the satellite industry has presented numerous opportunities across various sectors and significantly transformed people's daily lives. However, the high energy consumption resulting from frequent task execution poses challenges for satellite management. Energy consumption has become an important factor to be considered in the design of future satellite management systems. The energy-efficient satellite range scheduling problem (EESRSP) aims to optimize task sequencing profits within the satellite management system while simultaneously conserving energy. To address this problem, a mixed-integer scheduling model is constructed, taking into account the energy consumption of ground stations during telemetry, tracking, and command (TT&C) operations. Then, we propose a reinforcement learning-based memetic algorithm (RL-MA) that incorporates a heuristic initialization method (HIM). The HIM enables the algorithm to rapidly generate high-quality initial solutions by leveraging task features associated with EESRSRP. RL-MA employs both population search and local search (LS) techniques to explore the satellite TT&C task plan. RL-MA incorporates two genetic operators, crossover and mutation, into the population-based search. In the LS stage, multiple random and heuristic LS operators are incorporated through an ensemble LS strategy. To improve search performance, Q-learning, a classical class of reinforcement learning (RL) methods tailored to problem characteristics, is utilized for selecting effective operators. RL dynamically adjusts LS operators based on strategy performance. Experimental results demonstrate that the proposed RL-MA can effectively generate sound solutions for EESRSP with varying task scales. Furthermore, the improvement strategies employed in the algorithm are validated to enhance the scheduling performance of RL-MA. This study reveals that integrating RL with an ensemble of LS operators can significantly enhance the algorithm's exploit capability. Moreover, this LS approach applies to solving other types of satellite scheduling problems.
    DOI/handle
    http://dx.doi.org/10.1109/TAES.2024.3371964
    http://hdl.handle.net/10576/62260
    المجموعات
    • الشبكات وخدمات البنية التحتية للمعلومات والبيانات [‎142‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video