• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    3D printing flexible Ga-doped ZnO films for wearable energy harvesting: thermoelectric and piezoelectric nanogenerators

    Thumbnail
    View/Open
    s10854-024-13372-z.pdf (3.389Mb)
    Date
    2024
    Author
    Lemine, Aicha S.
    Bhadra, Jolly
    Sadasivuni, Kishor Kumar
    Popelka, Anton
    Yempally, Swathi
    Ahmad, Zubair
    Al-Thani, Noora J.
    Hasan, Anwarul
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    The 3D printing of energy harvesters using earth-abundant and non-toxic elements promotes energy sustainability and market competitiveness. The semiconducting behavior and non-centrosymmetric wurtzite crystal structure of gallium-doped zinc oxide (GZO) films make them attractive for thermoelectric and piezoelectric nanogenerators. This study investigates the thermal, structural, mechanical, thermoelectric, and piezoelectric properties of 3D-printed GZO nanocomposite films. Thermal analysis demonstrates the stability of the nanocomposite film up to 230 °C, making it suitable for wearable energy harvesters. The crystalline structure of the nanocomposite film aligns with the hexagonal wurtzite structure of ZnO and displays a bulk-like microstructure with a uniform distribution of elements. The presence of Ga 2p, Zn 2p, O 1 s, and C 1 s core levels confirms the development of the nanocomposite film, characterized by a fine granular structure and a conductive domain compared to the neat resin film. The inclusion of GZO nanofillers tailors the stress–strain behavior of the nanocomposite film, enhancing flexibility. The 3D-printed GZO nanocomposite films demonstrate a promising thermoelectric power factor and piezoelectric power densities, along with mechanical flexibility and thermal stability. These advancements hold significant potential for wearable and hybrid energy generation technologies.
    DOI/handle
    http://dx.doi.org/10.1007/s10854-024-13372-z
    http://hdl.handle.net/10576/63042
    Collections
    • Biomedical Research Center Research [‎786‎ items ]
    • Center for Advanced Materials Research [‎1482‎ items ]
    • Mechanical & Industrial Engineering [‎1461‎ items ]
    • Research of Qatar University Young Scientists Center [‎213‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video