• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Matching Game with No-Regret Learning for IoT Energy-Efficient Associations with UAV

    View/Open
    Matching_Game_With_No-Regret_Learning_for_IoT_Energy-Efficient_Associations_With_UAV.pdf (854.4Kb)
    Date
    2020
    Author
    Lhazmir, Safae
    Oualhaj, Omar Ait
    Kobbane, Abdellatif
    Ben-Othman, Jalel
    Metadata
    Show full item record
    Abstract
    Unmanned aerial vehicles (UAVs) are a promising technology to provide an energy-efficient and cost-effective solution for data collection from ground Internet of Things (IoT) network. In this paper, we analyze the UAV-IoT device associations that provide reliable connections with low communication power and load balance the traffic using analytical techniques from game theory. In particular, to maximize the IoT devices' benefits, a novel framework is proposed to assign them the most suitable UAVs. We formulate the problem as a distributed algorithm that combines notions from matching theory and no-regret learning. First, we develop a many-to-one matching game where UAVs and IoT devices are the players. In this subgame, the players rank one another based on individual utility functions that capture their needs. Each IoT device aims to minimize its transmitting energy while meeting its signal-to-interference-plus-noise-ratio (SINR) requirements, and each UAV seeks to maximize the number of served IoT devices while respecting its energy constraints. Second, a non-cooperative game based on no-regret learning is used to determine each IoT device's regret. Then, UAVs open a window for transfers to the IoT devices. Simulation results show that the proposed approach provides a low average total transmit power, ensures fast data transmission and optimal utilization of the UAVs' bandwidth.
    DOI/handle
    http://dx.doi.org/10.1109/TGCN.2020.3008992
    http://hdl.handle.net/10576/63520
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video