عرض بسيط للتسجيلة

المؤلفLhazmir, Safae
المؤلفOualhaj, Omar Ait
المؤلفKobbane, Abdellatif
المؤلفBen-Othman, Jalel
تاريخ الإتاحة2025-03-06T08:50:28Z
تاريخ النشر2020
اسم المنشورIEEE Transactions on Green Communications and Networking
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/TGCN.2020.3008992
الرقم المعياري الدولي للكتاب24732400
معرّف المصادر الموحدhttp://hdl.handle.net/10576/63520
الملخصUnmanned aerial vehicles (UAVs) are a promising technology to provide an energy-efficient and cost-effective solution for data collection from ground Internet of Things (IoT) network. In this paper, we analyze the UAV-IoT device associations that provide reliable connections with low communication power and load balance the traffic using analytical techniques from game theory. In particular, to maximize the IoT devices' benefits, a novel framework is proposed to assign them the most suitable UAVs. We formulate the problem as a distributed algorithm that combines notions from matching theory and no-regret learning. First, we develop a many-to-one matching game where UAVs and IoT devices are the players. In this subgame, the players rank one another based on individual utility functions that capture their needs. Each IoT device aims to minimize its transmitting energy while meeting its signal-to-interference-plus-noise-ratio (SINR) requirements, and each UAV seeks to maximize the number of served IoT devices while respecting its energy constraints. Second, a non-cooperative game based on no-regret learning is used to determine each IoT device's regret. Then, UAVs open a window for transfers to the IoT devices. Simulation results show that the proposed approach provides a low average total transmit power, ensures fast data transmission and optimal utilization of the UAVs' bandwidth.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc.
الموضوعInternet of Things
one-to-many matching game
regret matching
unmanned aerial vehicles
العنوانMatching Game with No-Regret Learning for IoT Energy-Efficient Associations with UAV
النوعArticle
الصفحات973-981
رقم العدد4
رقم المجلد4
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة