• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Single-phase hybrid multilevel inverter topology with low switching frequency modulation techniques for lower order harmonic elimination

    Thumbnail
    View/Open
    IET Power Electronics - 2021 - Siddique - Single‐phase hybrid multilevel inverter topology with low switching frequency.pdf (3.066Mb)
    Date
    2020
    Author
    Siddique, Marif Daula
    Bhaskar, Mahajan Sagar
    Rawa, Muhyaddin
    Mekhilef, Saad
    Memon, Mudasir Ahmed
    Padmanaban, Sanjeevikumar
    Almakhles, Dhafer J.
    Subramaniam, Umashankar
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    A new single-phase asymmetrical multilevel inverter (MLI) is presented in this study. The proposed topology generates a staircase output voltage waveform with a maximum number of levels using less number of components compared to several existing and recent topologies. The basic module consists of a combination of two isolated DC sources with ten switches that produce all the possible number of levels. Other advantages of the proposed MLI include improved output voltage performance and a low blocking voltage of the switches. The low switching frequency pulse width modulation (LSF-PWM) technique has been used for the generation of gate pulses. In the LSF technique, selective harmonic elimination (SHE) and fundamental switching frequency PWM techniques have been discussed for the better output voltage waveform. The optimised switching angles with SHEPWM has been calculated using particle swarm optimisation considering the different combination of the elimination of lower order harmonics. Simulation work was carried out using MATLAB/SIMULINK, and a prototype was implemented to validate the proposed MLI module. Simulation and experimental results have been provided in the study to show the performance of the proposed topology with these modulation techniques.
    DOI/handle
    http://dx.doi.org/10.1049/iet-pel.2020.0620
    http://hdl.handle.net/10576/63521
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video