Show simple item record

AuthorGodoi, Ricardo H M
AuthorGonçalves, Sérgio J
AuthorSayama, Célia
AuthorPolezer, Gabriela
AuthorReis Neto, José M
AuthorAlföldy, Bálint
AuthorVan Grieken, René
AuthorRiedi, Carlos A
AuthorYamamoto, Carlos I
AuthorGodoi, Ana F L
AuthorBencs, László
Available date2018-03-11T07:34:53Z
Publication Date2016-12-01
Publication NameEnvironmental Science and Pollution Research
Identifierhttp://dx.doi.org/10.1007/s11356-016-7586-0
CitationGodoi, R. H., Gonçalves, S. J., Sayama, C., Polezer, G., Neto, J. M. R., Alföldy, B., ... & Bencs, L. (2016). Health implications of atmospheric aerosols from asbestos-bearing road pavements traditionally used in Southern Brazil. Environmental Science and Pollution Research, 23(24), 25180-25190.‏
ISSN0944-1344
URIhttp://hdl.handle.net/10576/6413
AbstractSerpentine and amphibole asbestos occur naturally in certain geologic settings worldwide, most commonly in association with ultramafic rocks, along associated faults. Ultramafic rocks have been used in Piên County, Southern Brazil for decades for the purpose of road paving in rural and urban areas, but without the awareness of their adverse environmental and health impact. The aim of this study was the chemical characterization of aerosols re-suspended in two rural roads of Piên, paved with ultramafic rocks and to estimate the pulmonary deposition of asbestos aerosols. Bulk aerosol samples were analyzed by means of X-ray fluorescence spectrometry and X-ray diffraction analysis, in order to characterize elemental composition and crystallinity. Single-particle compositions of aerosols were analyzed by computer-controlled electron-probe microanalysis, indicating the presence of a few percentages of serpentine and amphibole. Given the chemical composition and size distribution of aerosol particles, the deposition efficiency of chrysotile, a sub-group of serpentine, in two principal segments of the human respiratory system was estimated using a lung deposition model. As an important finding, almost half of the inhaled particles were calculated to be deposited in the respiratory system. Asbestos depositions were significant (∼25 %) in the lower airways, even though the selected breathing conditions (rest situation, nose breathing) implied the lowest rate of respiratory deposition. Considering the fraction of inhalable suspended chrysotile near local roads, and the long-term exposure of humans to these aerosols, chrysotile may represent a hazard, regarding more frequent development of lung cancer in the population of the exposed region.
Languageen
PublisherSpringer Verlag
SubjectAdverse health effects
Asbestos minerals
Atmospheric particulate matter
Health impact
Lung deposition model
Single particles
TitleHealth implications of atmospheric aerosols from asbestos-bearing road pavements traditionally used in Southern Brazil.
TypeArticle
Pagination25180–25190
Issue Number24
Volume Number23
ESSN1614-7499


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record