• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الذكاء المعلوماتي
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الذكاء المعلوماتي
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Complementary Learning Subnetworks towards Parameter-Efficient Class-Incremental Learning

    عرض / فتح
    Complementary_Learning_Subnetworks_Towards_Parameter-Efficient_Class-Incremental_Learning.pdf (3.884Mb)
    التاريخ
    2025
    المؤلف
    Li, Depeng
    Zeng, Zhigang
    Dai, Wei
    Suganthan, Ponnuthurai Nagaratnam
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In the scenario of class-incremental learning (CIL), deep neural networks have to adapt their model parameters to non-stationary data distributions, e.g., the emergence of new classes over time. To mitigate the catastrophic forgetting phenomenon, typical CIL methods either cumulatively store exemplars of old classes for retraining model parameters from scratch or progressively expand model size as new classes arrive, which, however, compromises their practical value due to little attention paid to parameter efficiency. In this paper, we contribute a novel solution, effective control of the parameters of a well-trained model, by the synergy between two complementary learning subnetworks. Specifically, we integrate one plastic feature extractor and one analytical feed-forward classifier into a unified framework amenable to streaming data. In each CIL session, it achieves non-overwritten parameter updates in a cost-effective manner, neither revisiting old task data nor extending previously learned networks; Instead, it accommodates new tasks by attaching a tiny set of declarative parameters to its backbone, in which only one matrix per task or one vector per class is kept for knowledge retention. Experimental results on a variety of task sequences demonstrate that our method achieves competitive results against state-of-the-art CIL approaches, especially in accuracy gain, knowledge transfer, training efficiency, and task-order robustness. Furthermore, a graceful forgetting implementation on previously learned trivial tasks is empirically investigated to make its non-growing backbone (i.e., a model with limited network capacity) suffice to train on more incoming tasks.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105000289812&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TKDE.2025.3550809
    http://hdl.handle.net/10576/64812
    المجموعات
    • الذكاء المعلوماتي [‎98‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video