• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الابحاث المتعددة التخصصات والتصاميم االذكية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الابحاث المتعددة التخصصات والتصاميم االذكية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Wave energy forecasting: A state-of-the-art survey and a comprehensive evaluation

    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    1-s2.0-S1568494624014261-main.pdf (2.851Mb)
    التاريخ
    2025-01-08
    المؤلف
    Ruobin, Gao
    Zhang, Xiaocai
    Liang, Maohan
    Suganthan, Ponnuthurai Nagaratnam
    Dong, Heng
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Wave energy, a promising renewable energy source, has the potential to diversify the global energy mix significantly. Accurate forecasting of significant wave height (SWH) is crucial for enhancing the efficiency and reliability of wave energy conversion systems. As interest in this field grows, research into SWH forecasting has expanded dramatically. This comprehensive survey evaluates sixteen SWH forecasting methods, including Persistence, decision trees, deep neural networks, random neural networks, and random forests. The paper begins by establishing a detailed taxonomy that categorizes SWH forecasting algorithms, providing a framework to interpret the complexities of different methodological approaches. We then explore the interconnections between ensemble learning and decomposition-based frameworks and the integration of individual forecasting techniques within ensemble and hybrid models. In our empirical analysis, we rigorously assess the performance of these state-of-the-art algorithms using multiple, diverse datasets. Our findings reveal that ensemble methods generally surpass individual techniques in accuracy, with the extreme learning machine ranking as the least effective among the randomized neural networks. Looking ahead, we identify limitations in current forecasting models and propose new directions for research, including improvements in SWH model architecture, SWH data imperfection, forecasts for new buoy, and multimodality-enhanced methods.
    معرّف المصادر الموحد
    https://www.sciencedirect.com/science/article/pii/S1568494624014261
    DOI/handle
    http://dx.doi.org/10.1016/j.asoc.2024.112652
    http://hdl.handle.net/10576/64813
    المجموعات
    • الابحاث المتعددة التخصصات والتصاميم االذكية [‎32‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video