عرض بسيط للتسجيلة

المؤلفChen, Peng
المؤلفLiang, Jing
المؤلفQiao, Kang Jia
المؤلفSong, Hui
المؤلفSuganthan, Ponnuthurai Nagaratnam
المؤلفDai, Lou Lei
المؤلفBan, Xuan Xuan
تاريخ الإتاحة2025-05-11T11:29:25Z
تاريخ النشر2025-04-14
اسم المنشورIEEE Transactions on Intelligent Transportation Systems
المعرّفhttp://dx.doi.org/10.1109/TITS.2025.3557442
الاقتباسChen, P., Liang, J., Qiao, K. J., Song, H., Suganthan, P. N., Dai, L. L., & Ban, X. X. (2025). A Reinforced Neighborhood Search Method Combined With Genetic Algorithm for Multi-Objective Multi-Robot Transportation System. IEEE Transactions on Intelligent Transportation Systems.
الرقم المعياري الدولي للكتاب1524-9050
معرّف المصادر الموحدhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105002858563&origin=inward
معرّف المصادر الموحدhttp://hdl.handle.net/10576/64846
الملخصWith the rapid advancement of artificial intelligence, autonomous multi-robot systems have been successfully applied to various domains. Therefore, developing intelligent routing and scheduling systems to efficiently coordinate multi-robot movements in transportation networks emerges as a critical challenge. To address this issue, this study constructs an optimization model for cooperative robot operations, aiming to minimize total energy consumption and the completion time of most time-consuming robot. These objectives contain conflicts, thus requiring a multi-objective optimization approach to resolve them. We propose a reinforced neighborhood search method combined with genetic algorithm (RNSGA), which combines single solution search ideas and population-based techniques. RNSGA consists of two crucial steps: route construction to determine the composition and visiting sequence of task points within each route, as well as route allocation to assign routes to individual robots. The route construction phase incorporates several key components, including solution initialization, route balance mechanism, proximity-based optimization mechanism, and intro-route sequence adjustment method. For the route allocation phase, a population-based allocation mechanism is employed to determine the optimal assignment of routes. Comprehensive experiments on 24 classic transportation test instances demonstrate that RNSGA significantly outperforms six state-of-the-art algorithms.
اللغةen
الناشرInstitute of Electrical and Electronics Engineers Inc. (IEEE)
الموضوعgenetic algorithm
multi-objective optimization
Multi-robot systems
neighborhood search
routing and scheduling
العنوانA Reinforced Neighborhood Search Method Combined With Genetic Algorithm for Multi-Objective Multi-Robot Transportation System
النوعArticle
ESSN1558-0016
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة