• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الابحاث المتعددة التخصصات والتصاميم االذكية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مراكز البحث
  • مركز الكندي لبحوث الحوسبة
  • الابحاث المتعددة التخصصات والتصاميم االذكية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Reinforced Neighborhood Search Method Combined With Genetic Algorithm for Multi-Objective Multi-Robot Transportation System

    عرض / فتح
    A_Reinforced_Neighborhood_Search_Method_Combined_With_Genetic_Algorithm_for_Multi-Objective_Multi-Robot_Transportation_System.pdf (4.883Mb)
    التاريخ
    2025-04-14
    المؤلف
    Chen, Peng
    Liang, Jing
    Qiao, Kang Jia
    Song, Hui
    Suganthan, Ponnuthurai Nagaratnam
    Dai, Lou Lei
    Ban, Xuan Xuan
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    With the rapid advancement of artificial intelligence, autonomous multi-robot systems have been successfully applied to various domains. Therefore, developing intelligent routing and scheduling systems to efficiently coordinate multi-robot movements in transportation networks emerges as a critical challenge. To address this issue, this study constructs an optimization model for cooperative robot operations, aiming to minimize total energy consumption and the completion time of most time-consuming robot. These objectives contain conflicts, thus requiring a multi-objective optimization approach to resolve them. We propose a reinforced neighborhood search method combined with genetic algorithm (RNSGA), which combines single solution search ideas and population-based techniques. RNSGA consists of two crucial steps: route construction to determine the composition and visiting sequence of task points within each route, as well as route allocation to assign routes to individual robots. The route construction phase incorporates several key components, including solution initialization, route balance mechanism, proximity-based optimization mechanism, and intro-route sequence adjustment method. For the route allocation phase, a population-based allocation mechanism is employed to determine the optimal assignment of routes. Comprehensive experiments on 24 classic transportation test instances demonstrate that RNSGA significantly outperforms six state-of-the-art algorithms.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105002858563&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TITS.2025.3557442
    http://hdl.handle.net/10576/64846
    المجموعات
    • الابحاث المتعددة التخصصات والتصاميم االذكية [‎32‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video