• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Interdisciplinary & Smart Design
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • KINDI Center for Computing Research
  • Interdisciplinary & Smart Design
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    High frequency volatility forecasting and risk assessment using neural networks-based heteroscedasticity model

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0952197625003975-main.pdf (3.309Mb)
    Date
    2025-03-11
    Author
    Aryan, Bhambu
    Bera, Koushik
    Natarajan, Selvaraju
    Suganthan, Ponnuthurai Nagaratnam
    Metadata
    Show full item record
    Abstract
    High frequency volatility forecasting is essential for timely risk management and informed decision-making in dynamic financial markets. However, accurate forecasting is challenging due to the rapid nature of market movements and the complexity of underlying economic factors. This paper introduces a novel architecture combining Generalized Autoregressive Conditional Heteroscedasticity (GARCH) and Multi-layer Perceptron (MLP)-based models for enhanced volatility forecasting and risk assessment, where input variables are processed through GARCH-type models for volatility forecasting. The proposed GARCH-based MLP-Mixer (GaMM) model incorporates the stacking of multi-layer perceptrons, enabling deep representation learning, facilitating the extraction of temporal and feature information through operations along both time and feature dimensions, and addressing the complexity of high-frequency time-series data. The proposed model is evaluated on three high frequency financial times series datasets over three different years. The computational results demonstrate the proposed model’s superior performance over sixteen forecasting methods in three error metrics, Value-at-risk, and statistical tests for high frequency volatility forecasting and risk assessment tasks.
    URI
    https://www.sciencedirect.com/science/article/pii/S0952197625003975
    DOI/handle
    http://dx.doi.org/10.1016/j.engappai.2025.110397
    http://hdl.handle.net/10576/64848
    Collections
    • Interdisciplinary & Smart Design [‎32‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video