عرض بسيط للتسجيلة

المؤلفSumon, Md. Shaheenur Islam
المؤلفIslam, Khandaker Reajul
المؤلفHossain, Sakib Abrar
المؤلفRafique, Tanzila
المؤلفGhosh, Ranjit
المؤلفHassan, Gazi Shamim
المؤلفPodder, Kanchon Kanti
المؤلفBarhom, Noha
المؤلفTamimi, Faleh
المؤلفChowdhury, Muhammad E. H.
تاريخ الإتاحة2025-05-27T05:41:26Z
تاريخ النشر2025
اسم المنشورNeural Computing and Applications
المصدرScopus
المعرّفhttp://dx.doi.org/10.1007/s00521-025-11097-6
الرقم المعياري الدولي للكتاب9410643
معرّف المصادر الموحدhttp://hdl.handle.net/10576/65247
الملخصCephalometric analysis is essential for the diagnosis and treatment planning of orthodontics. In lateral cephalograms, however, the manual detection of anatomical landmarks is a time-consuming procedure. Deep learning solutions hold the potential to address the time constraints associated with certain tasks; however, concerns regarding their performances have been observed. To address this critical issue, we propose an end-to-end cascaded deep learning framework (Self-CephaloNet) for the task, which demonstrates benchmark performance over the ISBI 2015 dataset in predicting 19 cephalometric landmarks. Due to their adaptive nodal capabilities, Self-ONN (self-operational neural networks) demonstrates superior learning performance for complex feature spaces over conventional convolutional neural networks. To leverage this attribute, we introduce a novel self-bottleneck in the HRNetV2 (high-resolution network) backbone, which has exhibited benchmark performance on our landmark detection task. Our first-stage result surpasses previous studies, showcasing the efficacy of our singular end-to-end deep learning model, which achieves a remarkable 70.95% success rate in detecting cephalometric landmarks within a 2-mm range for the Test1 and Test2 datasets which are part of ISBI 2015 dataset. Moreover, the second stage significantly improves overall performance, yielding an impressive 82.25% average success rate for the datasets above within the same 2-mm distance. Furthermore, external validation has been conducted using the PKU cephalogram dataset. Our model demonstrates a commendable success rate of 75.95% within the 2-mm range.
اللغةen
الناشرSpringer Science and Business Media Deutschland GmbH
الموضوعAnatomical landmarks
Orthodontic diagnosis
Self-CephaloNet
Treatment planning
العنوانSelf-CephaloNet: a two-stage novel framework using operational neural network for cephalometric analysis
النوعArticle
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة