• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Biomedical Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reactive Oxygen Species: From Tumorigenesis to Therapeutic Strategies in Cancer

    Thumbnail
    View/Open
    Cancer Medicine - 2025 - Attique - Reactive Oxygen Species From Tumorigenesis to Therapeutic Strategies in Cancer.pdf (1.467Mb)
    Date
    2025-05-16
    Author
    Attique, Iqra
    Haider, Zahra
    Khan, Maha
    Hassan, Samina
    Soliman, Mohamed Mohamed
    Ibrahim, Wisam Nabeel
    Anjum, Sumaira
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Background: Reactive oxygen species (ROS), a class of highly reactive molecules, are closely linked to the pathogenesis of various cancers. While ROS primarily originate from normal cellular processes, external stimuli can also contribute to their production. Cancer cells typically exhibit elevated ROS levels due to disrupted redox homeostasis, characterized by an imbalance between antioxidant and oxidant species. ROS play a dual role in cancer biology: at moderate levels, they facilitate tumor progression by regulating oncogenes and tumor suppressor genes, inducing mutations, promoting proliferation, extracellular matrix remodeling, invasion, immune modulation, and angiogenesis. However, excessive ROS levels can cause cellular damage and initiate apoptosis, necroptosis, or ferroptosis. Methods: This review explores molecular targets involved in redox homeostasis dysregulation and examines the impact of ROS on the tumor microenvironment (TME). Literature from recent in vitro and in vivo studies was analyzed to assess how ROS modulation contributes to cancer development and therapy. Results: Findings indicate that ROS influence cancer progression through various pathways and cellular mechanisms. Targeting ROS synthesis or enhancing ROS accumulation in tumor cells has shown promising anticancer effects. These therapeutic strategies exhibit significant potential to impair tumor growth while also interacting with elements of the TME. Conclusion: The ROS serve as both promoters and suppressors of cancer depending on their intracellular concentration. Their complex role offers valuable opportunities for targeted cancer therapies. While challenges remain in precisely modulating ROS for therapeutic benefit, they hold promise as synergistic agents alongside conventional treatments, opening new avenues in cancer management.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105005023670&origin=inward
    DOI/handle
    http://dx.doi.org/10.1002/cam4.70947
    http://hdl.handle.net/10576/65488
    Collections
    • Biomedical Sciences [‎829‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video