• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hybrid Deep Learning Model for Accurate Short-Term Electricity Price Forecasting

    View/Open
    Hybrid_Deep_Learning_Model_for_Accurate_Short-Term_Electricity_Price_Forecasting.pdf (4.489Mb)
    Date
    2025-01-01
    Author
    Moradzadeh, Arash
    Mouhammadpourfard, Mostafa
    Weng, Yang
    Pol, Suhas
    Muyeen, S. M.
    Metadata
    Show full item record
    Abstract
    Accurate short-term electricity price forecasting (STEPF) is critical for efficient energy market operations, guiding investment strategies, resource allocation, and consumer behavior. This study introduces a hybrid deep learning approach specifically designed to improve STEPF accuracy by leveraging historical Hourly Ontario Energy Price (HOEP) data from 2017 to 2019. The model integrates advanced techniques, including data preprocessing and denoising through a Stacked Denoising Autoencoder (SDAE), along with enhanced temporal modeling via Bidirectional Long Short-Term Memory (BiLSTM) and Gated Recurrent Unit (GRU) networks. By capturing the complex dynamics inherent in electricity pricing data, the proposed hybrid model significantly enhances forecasting accuracy. Trained on data from 2017 and 2018, with 2019 used for testing, the model achieves a strong correlation coefficient (R = 99.86%) and substantially lowers forecasting errors. Comparative evaluations against established forecasting methods highlight the model's superior performance. This work demonstrates the practical value of deep learning techniques in the energy sector, particularly in responding to the volatility of demand and supply in real-time electricity markets.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105000966408&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/TPEC63981.2025.10906930
    http://hdl.handle.net/10576/65660
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video