• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sustainable production of green hydrogen, electricity, and desalinated water via a Hybrid Solar Chimney Power Plant (HSCPP) water-splitting process

    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S0360319923030719-main.pdf (2.278Mb)
    Date
    2024-01-02
    Author
    Abdelsalam, Emad
    Almomani, Fares
    Alnawafah, Hamza
    Habash, Dareen
    Jamjoum, Mohammad
    Metadata
    Show full item record
    Abstract
    This work presents a novel sustainable approach to producing desalinated water (Wdes), green hydrogen (GH2) and electrical energy (Eelc) using Hybrid Solar Chimney Power Plant (HSCPP) coupled with a water-splitting (WatSp) process. The HSCPP consists of a collector, absorber, chimney, bidirectional turbine outfitted with a seawater pool, and water electrolysis (Watelc) cell. The HSCPP harnesses solar energy to heat the air under the collector creating air movement within the structure, passing the bidirectional turbine, and producing Eelc. Sprinklers were fitted within the structure to operate the HSCPP as a cooling tower (CT) in the absence of solar radiation (Solirr). The Watelc cell directly uses the produced Eelc for the production of Hydrogen (PH2) and oxygen (PO2), while the condensed water at the chimney's inner walls was also collected as Wdes. Results revealed that the continuous operation of the HSCPP has an average annual Eelc of 633 ± 10 MWh that could be efficiently used to generate 21,653 kg of GRH2, 173,244 kg of O2 as well as 190,863 tons of Wdes. The overall efficiency of the HSCPP for the PH2 was found to be 18.5%, which is higher than Solar PV (max∼ 6%) and geothermal Rankine (max∼ 15%). These high efficiencies rank this technology as competitive with other renewable hydrogen production technologies. In conclusion, HSCPP has a promising future as a novel and sustainable solar tower technology to produce hydrogen.
    URI
    https://www.sciencedirect.com/science/article/pii/S0360319923030719
    DOI/handle
    http://dx.doi.org/10.1016/j.ijhydene.2023.06.165
    http://hdl.handle.net/10576/65724
    Collections
    • Chemical Engineering [‎1272‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video