• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Intelligent healthcare system for IoMT-integrated sonography: Leveraging multi-scale self-guided attention networks and dynamic self-distillation

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    1-s2.0-S2542660524000076-main.pdf (3.354Mb)
    Date
    2024-04-30
    Author
    Muhammad, Usman
    Rehman, Azka
    Masood, Sharjeel
    Khan, Tariq Mahmood
    Qadir, Junaid
    Metadata
    Show full item record
    Abstract
    Through the Internet of Medical Things (IoMT), early diagnosis of various critical diseases has been revolutionized, particularly via sonography in thyroid nodule identification. Despite its benefits, accurate thyroid nodule segmentation remains challenging due to the heterogeneity of nodules in terms of shape, size, and visual characteristics. This complexity underscores the necessity for improved Computer-Aided Diagnosis (CAD) methods that can provide robust assistance to radiologists. Subsequently, this study introduces a multiscale self-guided network leveraging a novel Dynamic Self-Distillation (DSD) training framework to significantly enhance thyroid nodule segmentation. The developed architecture captures rich contextual dependencies by capitalizing on self-guided attention mechanisms, thus fusing the local features with corresponding global dependencies while adaptively highlighting interdependent channel maps. Irrelevant information from coarse multiscale features is filtered out using self-guided attention mechanisms, leading to the generation of refined feature maps. These maps, in turn, facilitate the creation of accurate thyroid nodule segmentation masks. The novel DSD mechanism, implemented to train the architecture, dynamically selects the teacher branch based on performance relative to the ground truth label, and computes distillation losses for each student branch. Evaluation on two publicly available datasets reveals the superior performance of our framework over its downgraded versions and existing state-of-the-art techniques, demonstrating the promising potential of our proposed approach to be employed for thyroid nodule segmentation in IoMT. Our source code is made publicly available at: https://github.com/Azkarehman/MAXedNet.
    URI
    https://www.sciencedirect.com/science/article/pii/S2542660524000076
    DOI/handle
    http://dx.doi.org/10.1016/j.iot.2024.101065
    http://hdl.handle.net/10576/65982
    Collections
    • Computer Science & Engineering [‎2482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video