عرض بسيط للتسجيلة

المؤلفMuhammad, Usman
المؤلفRehman, Azka
المؤلفMasood, Sharjeel
المؤلفKhan, Tariq Mahmood
المؤلفQadir, Junaid
تاريخ الإتاحة2025-07-07T04:07:55Z
تاريخ النشر2024-04-30
اسم المنشورInternet of Things
المعرّفhttp://dx.doi.org/10.1016/j.iot.2024.101065
الاقتباسUsman, M., Rehman, A., Masood, S., Khan, T. M., & Qadir, J. (2024). Intelligent healthcare system for IoMT-integrated sonography: Leveraging multi-scale self-guided attention networks and dynamic self-distillation. Internet of Things, 25, 101065.
الرقم المعياري الدولي للكتاب25426605
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S2542660524000076
معرّف المصادر الموحدhttp://hdl.handle.net/10576/65982
الملخصThrough the Internet of Medical Things (IoMT), early diagnosis of various critical diseases has been revolutionized, particularly via sonography in thyroid nodule identification. Despite its benefits, accurate thyroid nodule segmentation remains challenging due to the heterogeneity of nodules in terms of shape, size, and visual characteristics. This complexity underscores the necessity for improved Computer-Aided Diagnosis (CAD) methods that can provide robust assistance to radiologists. Subsequently, this study introduces a multiscale self-guided network leveraging a novel Dynamic Self-Distillation (DSD) training framework to significantly enhance thyroid nodule segmentation. The developed architecture captures rich contextual dependencies by capitalizing on self-guided attention mechanisms, thus fusing the local features with corresponding global dependencies while adaptively highlighting interdependent channel maps. Irrelevant information from coarse multiscale features is filtered out using self-guided attention mechanisms, leading to the generation of refined feature maps. These maps, in turn, facilitate the creation of accurate thyroid nodule segmentation masks. The novel DSD mechanism, implemented to train the architecture, dynamically selects the teacher branch based on performance relative to the ground truth label, and computes distillation losses for each student branch. Evaluation on two publicly available datasets reveals the superior performance of our framework over its downgraded versions and existing state-of-the-art techniques, demonstrating the promising potential of our proposed approach to be employed for thyroid nodule segmentation in IoMT. Our source code is made publicly available at: https://github.com/Azkarehman/MAXedNet.
راعي المشروعSupport from Qatar University High Impact Internal Grant QUHI-CENG23/24-127 is acknowledged.
اللغةen
الناشرElsevier
الموضوعInternet of medical things
Real-time applications
Sonography
Thyroid nodule segmentation
Deep learning
العنوانIntelligent healthcare system for IoMT-integrated sonography: Leveraging multi-scale self-guided attention networks and dynamic self-distillation
النوعArticle
رقم المجلد25
ESSN2542-6605
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة