• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    SegCrop: Segmentation-based Dynamic Cropping of Endoscopic Videos to Address Label Leakage in Surgical Tool Detection

    عرض / فتح
    SegCrop_Segmentation-based_Dynamic_Cropping_of_Endoscopic_Videos_to_Address_Label_Leakage_in_Surgical_Tool_Detection.pdf (7.658Mb)
    التاريخ
    2023
    المؤلف
    Qayyum, Adnan
    Bilal, Muhammad
    Qadir, Junaid
    Caputo, Massimo
    Vohra, Hunaid
    Akinosho, Taofeek
    Berrou, Ilhem
    Niyi-Odumosu, Faatihah
    Loizou, Michael
    Ajayi, Anuoluwapo
    Abioye, Sofiat
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In recent times, surgical data science has emerged as an important research discipline in interventional healthcare. There are many potential applications for analysing endoscopic surgical videos using machine learning (ML) techniques such as surgical tool classification, action recognition, and tissue segmentation. However, the efficacy of ML algorithms to learn robust features drastically deteriorates when models are trained on noise-affected data [1]. Appropriate data preprocessing for endoscopic videos is thus crucial to ensure robust ML training. To this end, we demonstrate the presence of label leakage when surgical tool classification is performed naively and present SegCrop, a dynamic U-Net model with an integrated attention mechanism to dynamically crop the arbitrary field of view (FoV) in endoscopic surgical videos to remove spurious label-related information from the data. In addition, we leverage explainability techniques to demonstrate how the presence of spurious correlations influences the model's learning capability.
    DOI/handle
    http://dx.doi.org/10.1109/ISBI53787.2023.10230822
    http://hdl.handle.net/10576/66053
    المجموعات
    • علوم وهندسة الحاسب [‎2484‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video