عرض بسيط للتسجيلة

المؤلفQayyum, Adnan
المؤلفBilal, Muhammad
المؤلفQadir, Junaid
المؤلفCaputo, Massimo
المؤلفVohra, Hunaid
المؤلفAkinosho, Taofeek
المؤلفBerrou, Ilhem
المؤلفNiyi-Odumosu, Faatihah
المؤلفLoizou, Michael
المؤلفAjayi, Anuoluwapo
المؤلفAbioye, Sofiat
تاريخ الإتاحة2025-07-08T03:58:08Z
تاريخ النشر2023
اسم المنشورProceedings - International Symposium on Biomedical Imaging
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/ISBI53787.2023.10230822
الترقيم الدولي الموحد للكتاب 978-166547358-3
الرقم المعياري الدولي للكتاب19457928
معرّف المصادر الموحدhttp://hdl.handle.net/10576/66053
الملخصIn recent times, surgical data science has emerged as an important research discipline in interventional healthcare. There are many potential applications for analysing endoscopic surgical videos using machine learning (ML) techniques such as surgical tool classification, action recognition, and tissue segmentation. However, the efficacy of ML algorithms to learn robust features drastically deteriorates when models are trained on noise-affected data [1]. Appropriate data preprocessing for endoscopic videos is thus crucial to ensure robust ML training. To this end, we demonstrate the presence of label leakage when surgical tool classification is performed naively and present SegCrop, a dynamic U-Net model with an integrated attention mechanism to dynamically crop the arbitrary field of view (FoV) in endoscopic surgical videos to remove spurious label-related information from the data. In addition, we leverage explainability techniques to demonstrate how the presence of spurious correlations influences the model's learning capability.
اللغةen
الناشرIEEE
الموضوعExplainable AI
Image Segmentation
Robust ML
Surgical Data Science
Surgical Tool Detection
العنوانSegCrop: Segmentation-based Dynamic Cropping of Endoscopic Videos to Address Label Leakage in Surgical Tool Detection
النوعConference paper
رقم المجلد2023-April
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة