• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy-aware Theft Detection based on IoT Energy Consumption Data

    View/Open
    Energy-aware_Theft_Detection_based_on_IoT_Energy_Consumption_Data.pdf (1.208Mb)
    Date
    2023
    Author
    Nadeem, Zunaira
    Aslam, Zeeshan
    Jaber, Mona
    Qayyum, Adnan
    Qadir, Junaid
    Metadata
    Show full item record
    Abstract
    With the advent of modern smart grid networks, advanced metering infrastructure provides real-time information from smart meters (SM) and sensors to energy companies and consumers. The smart grid is indeed a paradigm that is enabled by the Internet of Things (IoT) and in which the SM acts as an IoT device that collects and transmits data over the Internet to enable intelligent applications. However, IoT data communicated over the smart grid could however be maliciously altered, resulting in energy theft due to unbilled energy consumption. Machine learning (ML) techniques for energy theft detection (ETD) based on IoT data are promising but are nonetheless constrained by the poor quality of data and particularly its imbalanced nature (which emerges from the dominant representation of honest users and poor representation of the rare theft cases). Leading ML-based ETD methods employ synthetic data generation to balance the training the dataset. However, these are trained to maximise average correct detection instead of ETD. In this work, we formulate an energy-aware evaluation framework that guides the model training to maximise ETD and minimise the revenue loss due to mis-classification. We propose a convolution neural network with positive bias (CNN-B) and another with focal loss CNN (CNN-FL) to mitigate the data imbalance impact. These outperform the state of the art and the CNN-B achieves the highest ETD and the minimum revenue loss with a loss reduction of 30.4% compared to the highest loss incurred by these methods.
    DOI/handle
    http://dx.doi.org/10.1109/VTC2023-Spring57618.2023.10200352
    http://hdl.handle.net/10576/66062
    Collections
    • Computer Science & Engineering [‎2482‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video