عرض بسيط للتسجيلة

المرشدHussein, Ibnelwaleed
المرشدKhaled, Mazen
المؤلفRIYAZ, NAJAMUS SAHAR
تاريخ الإتاحة2025-07-17T05:00:04Z
تاريخ النشر2025-06
معرّف المصادر الموحدhttp://hdl.handle.net/10576/66438
الملخصCorrosion inhibitors remain one of the most widely used and effective strategies for mitigating corrosion in the oil and gas industry. This study employed a machine learning (ML)-driven approach to develop green corrosion inhibitors, utilizing a Graph Convolutional Network (GCN) to predict inhibition efficiencies. The model was trained on a dataset of over 100 inhibitors and predicted an inhibition efficiency of 84% for 200 ppm chitosan-grafted polyacrylamide (CsAM). Experimental validation was conducted using electrochemical techniques on CsAM, synthesized with four different polyacrylamide-tochitosan ratios. Characterization of the inhibitors was performed using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Contact Angle measurements, and Thermogravimetric Analysis (TGA). Electrochemical results showed a maximum inhibition efficiency of 98% for 1:30 CsAM at 200 ppm. Corrosion kinetic analysis revealed that the inhibitor acts as a mixed-type inhibitor, with corrosion prevention primarily governed by physisorption.
اللغةen
الموضوعGreen Corrosion Inhibitors
Machine Learning Prediction
Graph Convolutional Network (GCN)
Chitosan-Grafted Polyacrylamide (CsAM)
Electrochemical Corrosion Analysis
العنوانMACHINE LEARNING DRIVEN DEVELOPMENT OF CORROSION INHIBITORS IN OIL AND GAS INDUSTRY APPLICATIONS
النوعMaster Thesis
التخصصEnvironmental Engineering
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة