• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Small-Signal Stability Analysis and Parameters Optimization of Virtual Synchronous Generator for Low-Inertia Power System

    Thumbnail
    View/Open
    Small-Signal_Stability_Analysis_and_Parameters_Optimization_of_Virtual_Synchronous_Generator_for_Low-Inertia_Power_System.pdf (3.720Mb)
    Date
    2025-06-20
    Author
    Altawallbeh, Alaa
    Alassi, Abdulrahman
    Meskin, Nader
    Al-Hitmi, Mohammed A.
    Massoud, Ahmed M.
    Metadata
    Show full item record
    Abstract
    The stable operation of converter-interfaced generation (CIG) units is paramount for ensuring resilience in low-inertia power systems. This paper presents a comprehensive small-signal modeling and stability analysis framework for grid-connected virtual synchronous generators (VSGs), integrating: an LCL-filter interfaced power converter, active/reactive power loop (APL/RPL) controllers, and dual-loop PI-based current and voltage control. Through systematic eigenvalue analysis and parameter sensitivity studies, complemented by time-domain verification in MATLAB/SIMULINK, we demonstrate the decisive influence of VSG control parameters on low-frequency oscillation (LFO) damping characteristics, transient frequency stability metrics, including the rate of change of frequency (ROCOF), maximum frequency deviation (f<inf>nadir</inf>), overshoot, and settling time. We further propose a hybrid Particle Swarm Optimization (PSO) algorithm with a multi-objective cost function to optimize VSG controller gains. The optimized design achieves an 83% reduction in ROCOF, a 90% improvement in frequency deviation, and a non-oscillatory power response. These results quantitatively validate that proper VSG gain tuning can significantly enhance dynamic performance and frequency stability in inertia-constrained grids. The proposed methodology offers practical insights for designing resilient CIG-dominated power systems.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105008811464&origin=inward
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2025.3581678
    http://hdl.handle.net/10576/66688
    Collections
    • Electrical Engineering [‎2848‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video