• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Atmospheric Science Cluster
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Environmental Science Center
  • Atmospheric Science Cluster
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Indoor Air Quality Assessment Through IoT Sensor Technology: A Montreal–Qatar Case Study

    Thumbnail
    View/Open
    Main article (5.081Mb)
    Date
    2025-05-01
    Author
    Wang, Zhihan
    Chen, Zhi
    Shahid, Imran
    Asif, Zunaira
    Haghighat, Fariborz
    Metadata
    Show full item record
    Abstract
    This study addresses the need for effective, real-time monitoring of indoor air quality, a critical factor for health and environmental well-being. The aim is to develop an affordable, Arduino-based IoT sensor system capable of continuous measurement of key air pollutants, including CO2, PM2.5, NO2, and VOCs. The system integrates multiple sensors and transmits data to an online server, where it is stored in a MySQL database for analysis and visualization. Validation studies conducted at Concordia University and Qatar University confirm the system’s accuracy and reliability, with discrepancies reduced to under 15% through calibration and adjustment techniques. Comparative analysis with commercial monitoring instruments reveals strong correlations and negligible deviations, supporting the system’s validity for real-time air quality monitoring. The system also includes a user-friendly interface that displays real-time data through intuitive charts and tables, along with an indoor air quality index to help users assess and address air pollution levels. The system demonstrates a 90% cost reduction versus commercial tools while maintaining a mean deviation of <15% across climatic extremes. Its combination of comprehensive sensors, data visualization tools, and an air quality index makes it an effective tool for environmental monitoring and decision-making.
    URI
    https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105006727148&origin=inward
    DOI/handle
    http://dx.doi.org/10.3390/atmos16050574
    http://hdl.handle.net/10576/67192
    Collections
    • Atmospheric Science Cluster [‎42‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video