Joint coverage and backhaul self-optimization in emerging relay enhanced heterogeneous networks
Date
2014-01-01Metadata
Show full item recordAbstract
This paper presents a novel framework for joint self-optimization of backhaul as well as coverage links spectral efficiency in relay enhanced heterogeneous networks. Considering a realistic heterogeneous network deployment, where some cells contain Relay Station (RS), while others do not, we develop an analytical framework for self-optimisation of macrocell Base Station (BS) antenna tilts. Our framework exploits a unique system level perspective to enable dynamic maximization of system-wide spectral efficiency of the BS-RS backhaul links as well as that of the BS-user coverage links. A distributed and practical self-organising solution is obtained by decomposing the large scale system-wide optimization problem into local small scale optimization problems, by mimicking the operational principles of self-organisation in biological systems. The local problems are non-convex but have very small scale and can be solved via appropriate numerical methods, such as sequential quadratic programming. The performance of developed solution is evaluated through extensive system level simulations for LTE-A type networks and compared against conventional tilting benchmarks. Numerical results show that up to 50% gain in average spectral efficiency is achievable through the proposed solution depending on users geographical distributions. © 2014 IEEE.
Collections
- QMIC Research [307 items ]