عرض بسيط للتسجيلة

المؤلفAhishali, Mete
المؤلفDegerli, Aysen
المؤلفKiranyaz, Serkan
المؤلفHamid, Tahir
المؤلفMazhar, Rashid
المؤلفGabbouj, Moncef
تاريخ الإتاحة2025-11-20T05:04:22Z
تاريخ النشر2024-12-31
اسم المنشورPattern Recognition
المعرّفhttp://dx.doi.org/10.1016/j.patcog.2024.110765
الاقتباسAhishali, Mete, Aysen Degerli, Serkan Kiranyaz, Tahir Hamid, Rashid Mazhar, and Moncef Gabbouj. "R2C-GAN: Restore-to-Classify Generative Adversarial Networks for blind X-ray restoration and COVID-19 classification." Pattern Recognition 156 (2024): 110765.
الرقم المعياري الدولي للكتاب00313203
معرّف المصادر الموحدhttps://www.sciencedirect.com/science/article/pii/S0031320324005168
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68696
الملخصRestoration of poor-quality medical images with a blended set of artifacts plays a vital role in a reliable diagnosis. As a pioneer study in blind X-ray restoration, we propose a joint model for generic image restoration and classification: Restore-to-Classify Generative Adversarial Networks (R2C-GANs). This is the first generic restoration approach forming an Image-to-Image translation task from poor-quality having noisy, blurry, or over/under-exposed images to high-quality image domain where forward and inverse transformations are learned using unpaired training samples. Simultaneously, the joint classification preserves the diagnostic-related label during restoration. Each R2C-GAN is equipped with operational layers/neurons in a compact architecture. The proposed joint model successfully restores images while achieving state-of-the-art Coronavirus Disease 2019 (COVID-19) classification with above 90% in F1-Score. In qualitative analysis, the restoration performance is confirmed by medical doctors where 68% of the restored images are selected against the original images. We share the software implementation at https://github.com/meteahishali/R2C-GAN.
راعي المشروعWe would like to thank Muhammad Muslim (MD), Consultant Pulmonology and Thoracic Surgery, Hamad Medical Corporation, Al Wakrah, Qatar, and Samman Rose (MD), Fellow Internal Medicine, Hamad General Hospital, Doha, Qatar, for their contribution in the qualitative evaluation. This work was supported in part by the NSF CBL Program under Project AMaLIA funded by the Business Finland .
اللغةen
الناشرElsevier
الموضوعCOVID-19 classification
Generative adversarial networks
Machine learning
X-ray images
X-ray image restoration
العنوانR2C-GAN: Restore-to-Classify Generative Adversarial Networks for blind X-ray restoration and COVID-19 classification
النوعArticle
رقم المجلد156
Open Access user License http://creativecommons.org/licenses/by/4.0/
ESSN0031-3203
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة