عرض بسيط للتسجيلة

المؤلفKiranyaz, Serkan
المؤلفMalik, Junaid
المؤلفYamac, Mehmet
المؤلفDuman, Mert
المؤلفAdalioglu, Ilke
المؤلفGuldogan, Esin
المؤلفInce, Turker
المؤلفGabbouj, Moncef
تاريخ الإتاحة2025-11-20T10:54:33Z
تاريخ النشر2024
اسم المنشورIEEE Transactions on Emerging Topics in Computational Intelligence
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/TETCI.2023.3314658
الاقتباسS. Kiranyaz et al., "Super Neurons," in IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 8, no. 1, pp. 206-228, Feb. 2024, doi: 10.1109/TETCI.2023.3314658.
الاقتباسen
الرقم المعياري الدولي للكتاب2471285X
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68724
الملخصSelf-Organized Operational Neural Networks (Self-ONNs) have recently been proposed as new-generation neural network models with nonlinear learning units, i.e., the generative neurons that yield an elegant level of diversity; however, like its predecessor, conventional Convolutional Neural Networks (CNNs), they still have a common drawback: localized (fixed) kernel operations. This severely limits the receptive field and information flow between layers and thus brings the necessity for deep and complex models. It is highly desired to improve the receptive field size without increasing the kernel dimensions. This requires a significant upgrade over the generative neurons to achieve the 'non-localized kernel operations' for each connection between consecutive layers. In this article, we present superior (generative) neuron models (or super neurons in short) that allow random or learnable kernel shifts and thus can increase the receptive field size of each connection. The kernel localization process varies among the two super-neuron models. The first model assumes randomly localized kernels within a range and the second one learns (optimizes) the kernel locations during training. An extensive set of comparative evaluations against conventional and deformable convolutional, along with the generative neurons demonstrates that super neurons can empower Self-ONNs to achieve a superior learning and generalization capability with a minimal computational complexity burden. PyTorch implementation of Self-ONNs with super-neurons is now publically shared.
الناشرIEEE
الموضوعConvolutional neural networks
generative neurons
non-localized kernels
operational neural networks
receptive field
العنوانSuper Neurons
النوعArticle
الصفحات206-228
رقم العدد1
رقم المجلد8
dc.accessType Open Access


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة