• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Exploring Sound Versus Vibration for Robust Fault Detection on Rotating Machinery

    Thumbnail
    View/Open
    Exploring_Sound_Versus_Vibration_for_Robust_Fault_Detection_on_Rotating_Machinery.pdf (14.36Mb)
    Date
    2024
    Author
    Kiranyaz, Serkan
    Can Devecioglu, Ozer
    Alhams, Amir
    Sassi, Sadok
    Ince, Turker
    Avci, Onur
    Gabbouj, Moncef
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Robust and real-time detection of faults has become an ultimate objective for predictive maintenance on rotating machinery. Vibration-based deep learning (DL) methodologies have become the de facto standard for bearing fault detection as they can produce state-of-the-art detection performances under certain conditions. Despite such particular focus on the vibration signal, the utilization of sound, on the other hand, has been widely neglected. As a result, no large-scale benchmark motor fault dataset exists with both sound and vibration data. The novel and significant contributions of this study can be summarized as follows. This study presents and publically shares the Qatar University dual-machine bearing fault benchmark dataset (QU-DMBF), which encapsulates sound and vibration data from two different motors operating under 1080 working conditions. Then, we focus on the major limitations and drawbacks of vibration-based fault detection due to numerous installation and operational conditions. Finally, we propose the first DL approach for sound-based fault detection and perform comparative evaluations between the sound and vibration signals over the QU-DMBF dataset. A wide range of experimental results shows that the sound-based fault detection method is significantly more robust than its vibration-based counterpart, as it is entirely independent of the sensor location, cost-effective (requiring no sensor and sensor maintenance), and can achieve the same level of the best detection performance by its vibration-based counterpart. This study publicly shares the QU-DMBF dataset, the optimized source codes in PyTorch, and comparative evaluations with the research community.
    DOI/handle
    http://dx.doi.org/10.1109/JSEN.2024.3405889
    http://hdl.handle.net/10576/68725
    Collections
    • Electrical Engineering [‎2871‎ items ]
    • Mechanical & Industrial Engineering [‎1530‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video