عرض بسيط للتسجيلة

المؤلفZahid, Muhammad Uzair
المؤلفDegerli, Aysen
المؤلفSohrab, Fahad
المؤلفKiranyaz, Serkan
المؤلفHamid, Tahir
المؤلفMazhar, Rashid
المؤلفGabbouj, Moncef
تاريخ الإتاحة2025-11-20T10:54:33Z
تاريخ النشر2024
اسم المنشورProceedings - International Conference on Image Processing, ICIP
المصدرScopus
المعرّفhttp://dx.doi.org/10.1109/ICIP51287.2024.10647550
الاقتباسM. U. Zahid et al., "Refining Myocardial Infarction Detection: A Novel Multi-Modal Composite Kernel Strategy in One-Class Classification," 2024 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 2024, pp. 3010-3016, doi: 10.1109/ICIP51287.2024.10647550.
الاقتباسen
الترقيم الدولي الموحد للكتاب 979-835034939-9
الرقم المعياري الدولي للكتاب15224880
معرّف المصادر الموحدhttp://hdl.handle.net/10576/68726
الملخصEarly detection of myocardial infarction (MI), a critical condition arising from coronary artery disease (CAD), is vital to prevent further myocardial damage. This study introduces a novel method for early MI detection using a one-class classification (OCC) algorithm in echocardiography. Our study overcomes the challenge of limited echocardiography data availability by adopting a novel approach based on Multi-modal Subspace Support Vector Data Description. The proposed technique involves a specialized MI detection framework employing multi-view echocardiography incorporating a composite kernel in the non-linear projection trick, fusing Gaussian and Laplacian sigmoid functions. Additionally, we enhance the update strategy of the projection matrices by adapting maximization for both or one of the modalities in the optimization process. Our method boosts MI detection capability by efficiently transforming features extracted from echocardiography data into an optimized lower-dimensional subspace. The OCC model trained specifically on target class instances from the comprehensive HMC-QU dataset that includes multiple echocardiography views indicates a marked improvement in MI detection accuracy. Our findings reveal that our proposed multi-view approach achieves a geometric mean of 71.24%, signifying a substantial advancement in echocardiography-based MI diagnosis and offering more precise and efficient diagnostic tools.
راعي المشروعThis work was supported by Research Council of Finland project AwCHA, and NSF-Business Finland project AMALIA. Foundation for Economic Education and Haltian's Carbon Handprint Research Program funded the work of Fahad Sohrab. Orion Research Foundation sr funded the work of Aysen Degerli.
الناشرIEEE
الموضوعEchocardiography
Machine Learning
Myocardial Infarction
One-class Classification
العنوانREFINING MYOCARDIAL INFARCTION DETECTION: A NOVEL MULTI-MODAL COMPOSITE KERNEL STRATEGY IN ONE-CLASS CLASSIFICATION
النوعConference
الصفحات3010-3016
dc.accessType Full Text


الملفات في هذه التسجيلة

Thumbnail

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة