• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-Time Damage Detection in Fiber Lifting Ropes Using Lightweight Convolutional Neural Networks

    Thumbnail
    View/Open
    Real-Time_Damage_Detection_in_Fiber_Lifting_Ropes_Using_Lightweight_Convolutional_Neural_Networks.pdf (3.139Mb)
    Date
    2025
    Author
    Jalonen, Tuomas
    Al-Sa'D, Mohammad
    Mellanen, Roope
    Kiranyaz, Serkan
    Gabbouj, Moncef
    Metadata
    Show full item record
    Abstract
    The health and safety hazards posed by worn crane lifting ropes mandate periodic inspection for damage. This task is time-consuming, prone to human error, halts operation, and may result in the premature disposal of ropes. Therefore, we propose using efficient deep learning and computer vision methods to automate the process of detecting damaged ropes. Specifically, we present a vision-based system for detecting damage in synthetic fiber rope images using lightweight convolutional neural networks (CNNs). We develop a camera-based apparatus to photograph the lifting rope's surface, while in operation, and capture the progressive wear-and-tear as well as the more significant degradation in the rope's health state. Experts from Konecranes annotate the collected images in accordance with the rope's condition; normal or damaged. Then, we preprocess the images, systematically design a deep learning model, evaluate its detection and prediction performance, analyze its computational complexity, and compare it with various other models. Experimental results show the proposed model outperforms other similar techniques with 96.5% accuracy, 94.8% precision, 98.3% recall, 96.5% ${F}1$ -score, and 99.3% AUC. Besides, they demonstrate the model's real-time operation, low memory footprint, robustness to various environmental and operational conditions, and adequacy for deployment in industrial applications such as lifting, mooring, towing, climbing, and sailing.
    DOI/handle
    http://dx.doi.org/10.1109/JSEN.2024.3521118
    http://hdl.handle.net/10576/68730
    Collections
    • Electrical Engineering [‎2871‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video